Klasifikasi Dataset Diabetes menggunakan Algoritma K-Nearest Neighbors
Abstract
Data mining merupakan suatu metode yang baik untuk menangani data skala besar. Performasi menjadi penting dalam metode data mining. Salah satu metode yang memiliki performasi terbaik adalah K-Nearest Neighbor (KNN). Artikel ini membahas terkait performasi K-NN. Data yang digunakan pada penelitian ini adalah Diabetes. Data dibagi menjadi 80% data trainingdan 20% data testing. Dengan menggunakan 11 tetangga terdekat, model menghasilkan akurasi sebesar 0.765625. Angka ini mencerminkan kinerja yang baik. Metrik kritis termasuk akurasi sebesar 0.77, presisi sebesar 0.80, dan recall sebesar 0.85. Hasil ini menunjukkan bahwa model KNN memiliki potensi untuk mengklasifikasikan pasien diabetes dengan akurasi yang baik.