Analysis of Volatility and Stock Risk in Energy Sector Companies Using The ARCH/GARCH Method
Keywords:
ARCH-GARCH, time series, volatility, stock risk, value at riskAbstract
Events of geopolitical conflict and the stipulation of Presidential Decree No. 112 of 2022 change the prices of energy commodities, such as oil prices which are increasing and coal prices are falling. This situation influences share price movements and investor transactions. This research is a time series analysis research by looking at event studies . The aim of this research is to determine the volatility and risk patterns of shares of energy sector companies, namely ADRO, PGAS and POWR. The method used in this research is the ARCH-GARCH model and value at risk calculations . Based on the results of this research, it can be concluded that the three companies contain the ARCH( 1) and GARCH(1,1) phenomena. The volatility patterns of the ADRO and PGAS variables are sensitive to events that occur so they are highly volatile. Based on the analysis of volatility patterns and value at risk calculations , it can be concluded that POWR has the lowest volatility and risk patterns compared to ADRO and PGAS.
References
Arifin, A. (2004). Membaca Saham. Andi.
Bakrie, C. R., Delanova, M. O., & Mochamad Yani, Y. (2022). Pengaruh Perang Rusia Dan Ukraina Terhadap Perekonomian Negara Kawasan Asia Tenggara. Jurnal Caraka Prabu, 6(1), 65–86. https://doi.org/10.36859/jcp.v6i1.1019
Damayanti, E. N., & Kuswanto, H. (2019). Analisis Risiko Pada Return Saham Perusahaan Asuransi Menggunakan Metode VaR dengan Pendekatan. 16(1), 40–50. https://doi.org/10.20956/jmsk.v
Fahmi, I., & Hadi, Y. L. (2009). Teori Portofolio dan Analisis Investasi: Teori dan Soal Jawab. Alfabeta.
Gam, T., Nainggolan, N., & Komalig, H. A. H. (2022). Analisis Volatilitas dan Peramalan Inflasi di Maluku Utara Menggunakan Model Generalized Autoregressive Conditional Heteroscedasticity (GARCH). Jurnal LPPM Bidang Sains Dan Teknologi, 7(2), 8–18.
Gu, G. (2023). The Dynamic Interplay of Market Forces and Human Behavior: A Critical Review of Efficient Market Hypothesis and Behavioral Finance. Advances in Economics, Management and Political Sciences, 31(1), 55–60. https://doi.org/10.54254/2754-1169/31/20231498
Gu, Y. (2023). Efficient Market Hypothesis during COVID-19 Pandemic. Advances in Economics, Management and Political Sciences, 26(1), 301–307. https://doi.org/10.54254/2754-1169/26/20230588
Jorion, P. (2007). Value At Risk The New Benchmark for Managing Financial (3rd ed.). McGraw-Hill.
Larasati, M. S., Astuti, T., & Ambarwati, S. (2021). Determinan volatilitas harga saham. 1(2), 73–82.
Octavianus, H. (2021). Telaah Literatur Efficient Market Hypothesis. November, 417. https://doi.org/10.13140/RG.2.2.17253.93925
Olawale, A. O., Oladude, G. A., Akintunde, M. O., Ojo, T. O., & Amusan, A. S. (2022). Univariate Analysis of Volatility of Stock Market Returns Using Garch Models . 10(11).
Pratama, S., & Asnawi, S. K. (2020). Analisis Pengujian Hipotesis Pasar Efisien Pada Indeks JII , Manufacture , Infrastructure , Mining , Dan Miscellaneous Di Bursa Efek Indonesia (BEI) Periode 2015-2020. i.
Purnama, C. (2023). Estimasi Risiko Pasar Pada Data Return Kurs Harian Dengan Value At Risk Menggunakan Model – Model Volatilitas GARCH. 25(2), 429–444.
Ramayanti, R., Devianto, D., & Alhusna, D. (2023). Pemodelan ARIMA-GARCH Untuk Volatilias Dan Value At Risk Pada Saham Pt . Gudang Garam Tbk. 4(2), 1029–1040.
Rusere, W., & Kaseke, F. (2021). Modeling South African Stock Market Volatility Using Univariate Symmetric and Asymmetric Garch Models. Indian Journal of Finance and Banking, 6(1), 1–16. https://doi.org/10.46281/ijfb.v6i1.1177
Samsiar, & Haryono, S. (2023). Faktor-Faktor Penentu Volatilitas Harga Saham Syariah Dengan Ukuran Perusahaan Sebagai Variabel Moderasi. Bahtera Inovasi, 6(2), 175–186. https://doi.org/10.31629/bi.v6i2.5245
Samsul, M. (2006). Pasar Modal dan Manajemen Portofolio. Erlangga.
Santioso, L., & Angesti, Y. G. (2019). Faktor-Faktor Yang Mempengaruhi Volatilitas Harga Saham Perusahaan Manufaktur. XXIV(01), 46–64.
Sari, L. K., Achsani, N. A., & Sartono, B. (2017). Pemodelan Volatilitas Return Saham : Studi Kasus Pasar Saham Asia. 18(1). https://doi.org/10.21002/jepi.2018.03
Sari, W., & Setiyawan, S. (2023). Volatilitas Saham Sektor Teknologi yang Terdaftar di Indeks Saham Syariah Indonesia pada Masa Pandemi COVID-19. Jurnal Accounting Information System (AIMS), 6(1), 53–62. https://doi.org/10.32627/aims.v6i1.705
Sumiyati, Arisandi, B. D. A., & Wilujeng, P. R. (2022). Metode ARCH / GARCH Untuk Memprediksi Hubungan Economic Uncertainty (Covid 19 ) Dan Volatilitas Saham. 24(1), 117–130.
Trimono, Riyantoko, P. A., & Agista, F. (2022). Model ARMA-GARCH dan Ensemble ARMA- GARCH untuk Prediksi Value-at-Risk pada Portofolio Saham. 2022(Senada), 83–91.
Umar, H. (2013). Metode Penelitian untuk Skripsi dan Tesis (Rajawali (ed.)).
Wei, W. W. . (2006). Time Series Analysis: Univariate and Multivariate Methods Second Edition (2nd ed.). Pearson Prentice Hall.s.
Wellington Garikai Bonga. (2019). Stock Market Volatility Analysis using GARCH Family Models: Evidence from Zimbabwe Stock Exchange. 30 May 2019, 13.
Widarjono, A. (2013). Ekonometrika. Pengantar dan Aplikasinya. Disertai Panduan Eviews. Edisi keempat. UPP STIM YKPN.
Zulfikar. (2016). Pengantar Pasar Modal dengan Pendekatan Statistika (1st ed.). Gramedia.